Cisco device configuration tutorials and networking fundamentals
Cisco configuration tutorials
Jump to section:
OSPF uses link cost as the metric for calculating the shortest path to a destination. More precisely, a router receives the sum of all costs assigned to each individual outgoing interface leading towards a destination. If there are multiple OSPF paths to a destination, a router decides the best path based on the lowest cost. This means, a lower interface cost is more preferred.
In OSPF, interfaces with higher bandwidths are automatically assigned a lower cost. But the OSPF cost can also be manually configured to serve a variety of purposes, such as path prioritisation, load balancing, and assigning a primary gateway in a redundant design. The following table shows how to configure the OSPF cost of an interface with IPv4 and IPv6.
Description | Configuration |
---|---|
OSPFv2 IPv4 interface |
R2>enable
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface Gi0/1
R2(config-if)#ip ospf cost 100
R2(config-if)#exit
R2(config)#exit
R2#
|
OSPFv3 IPv6 interface (old-style) |
R2>enable
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface Gi0/1
R2(config-if)#ipv6 ospf cost 100
R2(config-if)#exit
R2(config)#exit
R2#
|
OSPFv3 IPv6 interface (new-style) |
R2>enable
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface Gi0/1
R2(config-if)#ospfv3 10 ipv6 cost 100
R2(config-if)#exit
R2(config)#exit
R2#
|
Dual-stack IPv4/IPv6 interface (OSPFv3) |
R2>enable
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface Gi0/1
R2(config-if)#ospfv3 10 ipv4 cost 100
R2(config-if)#exit
R2(config)#exit
R2#
|
Notice in the above table that OSPFv3 can carry IPv4 and IPv6 prefixes, and as a result it is also possible to assign a cost value for IPv4 prefixes using OSPFv3. This is especially useful for dual stack IPv4/IPv6 network deployments.
OSPF also assigns a cost to external prefixes that are redistributed from another routing protocol. By default the seed metric is used, which is a metric value inherited from the originating routing protocol. Additionally, OSPF can assign further metric values to redistributed prefixes and influence primary/secondary gateway selection. The following packet capture shows an OSPF external prefix and its metric (cost).
The metric type is used with external prefixes redistributed into the OSPF routing process. This means, OSPF external LSAs carry either a type-1 or type-2 metric value. By default, OSPF assigns metric type-2 during redistribution and as a result an external prefix will not change its route cost within the OSPF domain. Any OSPF router that receives an external type-2 metric will see the same cost value, no matter its location in the OSPF domain.
The metric type-2 is useful for redundant active/standby Autonomos System Boundary Router (ASBR) designs because the configured metric difference (between active and standby devices) can be hardcoded. However, this is not the case with the metric type-1. A router receives a metric type-1 external LSA with the inherited external cost (seed metric) increased by the internal cost to reach the redistributing ASBR. So the internal metric to reach the ASBR is added to metric type-1 LSAs. This can be useful in an active/active ASBR design as shown below.
Configuration:
R1#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to Host1 ** ip address 172.16.1.2 255.255.255.0 duplex auto speed auto media-type rj45 R1#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R2 ** ip address 10.2.0.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R1#show run int Gi0/2 | sec int interface GigabitEthernet0/2 description ** to R3 ** ip address 10.1.0.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R1#show run int Lo10 | sec int interface Loopback10 ip address 1.1.1.1 255.255.255.255 R1#show run | sec ^router router ospf 10 router-id 1.1.1.1 passive-interface GigabitEthernet0/0 network 1.1.1.1 0.0.0.0 area 0 network 10.1.0.0 0.0.0.3 area 0 network 10.2.0.0 0.0.0.3 area 0 network 172.16.1.0 0.0.0.255 area 0
R3#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.1.0.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R3#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R5 ** ip address 10.0.1.1 255.255.255.252 duplex auto speed auto media-type rj45 R3#show run int Lo10 | sec int interface Loopback10 ip address 3.3.3.3 255.255.255.255 R3#show run | sec ^router router ospf 10 router-id 3.3.3.3 redistribute bgp 65001 subnets route-map RM-REDISTRIBUTE network 3.3.3.3 0.0.0.0 area 0 network 10.1.0.0 0.0.0.3 area 0 router bgp 65001 bgp router-id 3.3.3.3 bgp log-neighbor-changes network 172.16.1.0 mask 255.255.255.0 network 172.16.2.0 mask 255.255.255.0 neighbor 5.5.5.5 remote-as 65002 neighbor 5.5.5.5 ebgp-multihop 255 neighbor 5.5.5.5 update-source Loopback10 R3#show run | sec ^route-map route-map RM-REDISTRIBUTE permit 10 set metric-type type-1 R3#show run | sec ^ip route ip route 5.5.5.5 255.255.255.255 GigabitEthernet0/1 10.0.1.2
R4#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R2 ** ip address 10.3.0.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R4#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R5 ** ip address 10.0.2.1 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Lo10 | sec int interface Loopback10 ip address 4.4.4.4 255.255.255.255 R4#show run | sec ^router router ospf 10 router-id 4.4.4.4 redistribute bgp 65001 subnets route-map RM-REDISTRIBUTE network 4.4.4.4 0.0.0.0 area 0 network 10.3.0.0 0.0.0.3 area 0 router bgp 65001 bgp router-id 4.4.4.4 bgp log-neighbor-changes network 172.16.1.0 mask 255.255.255.0 network 172.16.2.0 mask 255.255.255.0 neighbor 5.5.5.5 remote-as 65002 neighbor 5.5.5.5 ebgp-multihop 255 neighbor 5.5.5.5 update-source Loopback10 R4#show run | sec ^route-map route-map RM-REDISTRIBUTE permit 10 set metric-type type-1 R4#show run | sec ^ip route ip route 5.5.5.5 255.255.255.255 GigabitEthernet0/1 10.0.2.2
R5#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R3 ** ip address 10.0.1.2 255.255.255.252 duplex auto speed auto media-type rj45 R5#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.0.2.2 255.255.255.252 duplex auto speed auto media-type rj45 R5#show run int Lo10 | sec int interface Loopback10 ip address 5.5.5.5 255.255.255.255 R5#show run int Lo20 | sec int interface Loopback20 ip address 192.168.1.1 255.255.255.0 R5#show run int Lo30 | sec int interface Loopback30 ip address 192.168.2.1 255.255.255.0 R5#show run | sec ^router router bgp 65002 bgp router-id 5.5.5.5 bgp log-neighbor-changes network 192.168.1.0 network 192.168.2.0 neighbor 3.3.3.3 remote-as 65001 neighbor 3.3.3.3 ebgp-multihop 255 neighbor 3.3.3.3 update-source Loopback10 neighbor 4.4.4.4 remote-as 65001 neighbor 4.4.4.4 ebgp-multihop 255 neighbor 4.4.4.4 update-source Loopback10 R5#show run | sec ^ip route ip route 3.3.3.3 255.255.255.255 GigabitEthernet0/0 10.0.1.1 ip route 4.4.4.4 255.255.255.255 GigabitEthernet0/1 10.0.2.1
R1#show ip route ospf | beg Ga Gateway of last resort is not set 2.0.0.0/32 is subnetted, 1 subnets O 2.2.2.2 [110/2] via 10.2.0.2, 02:55:55, GigabitEthernet0/1 3.0.0.0/32 is subnetted, 1 subnets O 3.3.3.3 [110/2] via 10.1.0.2, 02:55:45, GigabitEthernet0/2 4.0.0.0/32 is subnetted, 1 subnets O 4.4.4.4 [110/3] via 10.2.0.2, 02:55:35, GigabitEthernet0/1 10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks O 10.3.0.0/30 [110/2] via 10.2.0.2, 02:55:55, GigabitEthernet0/1 172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks O 172.16.2.0/24 [110/2] via 10.2.0.2, 02:55:55, GigabitEthernet0/1 O E1 192.168.1.0/24 [110/2] via 10.1.0.2, 02:54:50, GigabitEthernet0/2 « Metric type-1 is used O E1 192.168.2.0/24 [110/2] via 10.1.0.2, 02:54:50, GigabitEthernet0/2 R1#show ip route 192.168.1.0 Routing entry for 192.168.1.0/24 Known via "ospf 10", distance 110, metric 2 Tag 65002, type extern 1 « Metric type-1 is used Last update from 10.1.0.2 on GigabitEthernet0/2, 02:52:12 ago Routing Descriptor Blocks: * 10.1.0.2, from 3.3.3.3, 02:52:12 ago, via GigabitEthernet0/2 « ASBR R3 is preferred Route metric is 2, traffic share count is 1 Route tag 65002 R2#show ip route 192.168.1.0 Routing entry for 192.168.1.0/24 Known via "ospf 10", distance 110, metric 2 Tag 65002, type extern 1 Last update from 10.3.0.2 on GigabitEthernet0/2, 02:50:36 ago Routing Descriptor Blocks: * 10.3.0.2, from 4.4.4.4, 02:50:36 ago, via GigabitEthernet0/2 « ASBR R4 is preferred Route metric is 2, traffic share count is 1 Route tag 65002 Host1:~$ traceroute 192.168.1.1 -q 1 -n traceroute to 192.168.1.1 (192.168.1.1), 30 hops max, 46 byte packets 1 172.16.1.2 3.316 ms 2 10.1.0.2 1.641 ms « Host1 uses ASBR R3 to reach Site 2 3 10.0.1.2 2.176 ms Host2:~$ traceroute 192.168.1.1 -q 1 -n traceroute to 192.168.1.1 (192.168.1.1), 30 hops max, 46 byte packets 1 172.16.2.2 2.798 ms 2 10.3.0.2 2.688 ms « Host2 uses ASBR R4 to reach Site 2 3 10.0.2.2 2.543 ms
Using the same topology but configuring R3 as the active router and R4 as the standby can be easily achieved by assigning metric type-2 on both ASBRs. The following configurations would need to be applied. As a result, prefixes redistributed by R4 always have a metric 10 assigned. Meanwhile, R3 uses the default seed metric of 1. This is because BGP routes redistributed into OSPF receive the metric 1 (also shown in below output). Thus, R3 could use the default seed metric to make it the more preferred (primary) ASBR.
R4>enable R4#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R4(config)#route-map RM-REDISTRIBUTE R4(config-route-map)#set metric-type type-2 R4(config-route-map)#set metric 10 R4(config-route-map)#exit R4(config)# R4(config)#router ospf 10 R4(config-router)#redistribute bgp 65001 subnets route-map RM-REDISTRIBUTE R4(config-router)#exit R4(config)#exit R4# R4#show ip ospf database external 192.168.1.0 OSPF Router with ID (4.4.4.4) (Process ID 10) Type-5 AS External Link States LS age: 6 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 4.4.4.4 LS Seq Number: 80000001 Checksum: 0xB096 Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 10 « R4 assigns metric 10 to E2 route Forward Address: 0.0.0.0 External Route Tag: 65002 ------------------------------------------------------------------------------- R3>enable R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3(config)#route-map RM-REDISTRIBUTE R3(config-route-map)#set metric-type type-2 R3(config-route-map)#exit R3(config)# R3(config)#router ospf 10 R3(config-router)#redistribute bgp 65001 subnets route-map RM-REDISTRIBUTE R3(config-router)#exit R3(config)#exit R3# R3#show ip ospf database external 192.168.1.0 OSPF Router with ID (3.3.3.3) (Process ID 10) Type-5 AS External Link States LS age: 27 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 3.3.3.3 LS Seq Number: 80000001 Checksum: 0x74DF Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 1 « R3 uses default seed metric Forward Address: 0.0.0.0 External Route Tag: 65002
Note that the default OSPF behavior is to redistribute prefixes as E2 (external type-2) routes, so the set metric-type type-2 command in the route-map is not necessary. For example, applying the following configuration on R3 would already make it redistribute BGP routes into OSPF as E2 prefixes with the default seed metric 1.
R3>
R3>enable
R3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#
R3(config)#router ospf 10
R3(config-router)#router-id 3.3.3.3
R3(config-router)#network 10.1.0.0 0.0.0.3 area 0
R3(config-router)#redistribute bgp 65001 subnets
R3(config-router)#
R3(config-router)#exit
R3(config)#
R3(config)#exit
R3#
OSPF always prefers an external type-1 (E1) route over an external type-2 (E2) route. This is true even if the E2 route has a lower cost (better metric) than the E1 route. The following topology displays such a scenario. R2 and R3 are ASBRs and receive prefixes 192.168.1.0/24 and 192.168.2.0/24 via eBGP from R4. Next, R2 redistributes the prefixes into OSPF as E1 routes with a cost of 100, and R3 redistributes them as E2 routes with a cost of 50.
R1, upon receiving the external type-5 LSAs from the ASBRs chooses R2 as the next-hop, even though the external routes from R3 have a lower (more preferred) cost.
Configuration:
R1#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to ASBR R2 ** ip address 10.1.0.1 255.255.255.252 duplex auto speed auto media-type rj45 R1#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to ASBR R3 ** ip address 10.2.0.1 255.255.255.252 duplex auto speed auto media-type rj45 R1#show run | sec ^router router ospf 10 router-id 1.1.1.1 network 10.1.0.0 0.0.0.3 area 0 network 10.2.0.0 0.0.0.3 area 0
R2#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.1.0.2 255.255.255.252 duplex auto speed auto media-type rj45 R2#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.10.0.1 255.255.255.252 duplex auto speed auto media-type rj45 R2#show run | sec ^router router ospf 10 router-id 2.2.2.2 redistribute bgp 65001 metric 100 metric-type 1 subnets network 10.1.0.0 0.0.0.3 area 0 router bgp 65001 bgp router-id 2.2.2.2 bgp log-neighbor-changes neighbor 10.10.0.2 remote-as 65002
R3#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.2.0.2 255.255.255.252 duplex auto speed auto media-type rj45 R3#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.20.0.1 255.255.255.252 duplex auto speed auto media-type rj45 R3#show run | sec ^router router ospf 10 router-id 3.3.3.3 redistribute bgp 65001 metric 50 subnets network 10.2.0.0 0.0.0.3 area 0 router bgp 65001 bgp router-id 3.3.3.3 bgp log-neighbor-changes neighbor 10.20.0.2 remote-as 65002
R4#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to ASBR R2 ** ip address 10.10.0.2 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to ASBR R3 ** ip address 10.20.0.2 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Lo10 | sec int interface Loopback10 ip address 192.168.1.1 255.255.255.0 R4#show run int Lo20 | sec int interface Loopback20 ip address 192.168.2.1 255.255.255.0 R4#show run | sec ^router router bgp 65002 template peer-session EXAMPLE-EBGP remote-as 65001 exit-peer-session ! bgp router-id 4.4.4.4 bgp log-neighbor-changes network 192.168.1.0 network 192.168.2.0 neighbor 10.10.0.1 inherit peer-session EXAMPLE-EBGP neighbor 10.20.0.1 inherit peer-session EXAMPLE-EBGP
R1#show ip ospf database external 192.168.1.0 OSPF Router with ID (1.1.1.1) (Process ID 10) Type-5 AS External Link States LS age: 6 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 2.2.2.2 LS Seq Number: 80000001 Checksum: 0xF084 Length: 36 Network Mask: /24 Metric Type: 1 (Comparable directly to link state metric) MTID: 0 Metric: 100 Forward Address: 0.0.0.0 External Route Tag: 65002 LS age: 644 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 3.3.3.3 LS Seq Number: 80000001 Checksum: 0x60C2 Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 50 Forward Address: 0.0.0.0 External Route Tag: 65002 R1#show ip ospf rib 192.168.1.0 OSPF Router with ID (1.1.1.1) (Process ID 10) Base Topology (MTID 0) OSPF local RIB Codes: * - Best, > - Installed in global RIB LSA: type/LSID/originator *> 192.168.1.0/24, Ext1, cost 101, fwd cost 1, tag 65002 SPF Instance 4, age 00:00:40 contributing LSA: 5/192.168.1.0/3.3.3.3 contributing LSA: 5/192.168.1.0/2.2.2.2 Flags: RIB via 10.1.0.2, GigabitEthernet0/0 label 1048578 Flags: RIB LSA: 5/192.168.1.0/2.2.2.2 « The route through R2 is installed in the RIB R1#show ip route 192.168.1.0 Routing entry for 192.168.1.0/24 Known via "ospf 10", distance 110, metric 101 « E1 route through R2 is chosen as next-hop even though it has a higher (worse) metric than the E2 route Tag 65002, type extern 1 Last update from 10.1.0.2 on GigabitEthernet0/0, 00:01:09 ago Routing Descriptor Blocks: * 10.1.0.2, from 2.2.2.2, 00:01:09 ago, via GigabitEthernet0/0 Route metric is 101, traffic share count is 1 Route tag 65002
OSPF automatically calculates a cost for each interface on a local router that participates in the routing process. The cost calculation is carried out using a formula. The formula includes a reference bandwidth of 100 Mbps (default for OSPFv2 and OSPFv3) which is divided by the bandwidth of an interface. So, a Fast Ethernet interface which has a bandwidth of 100 Mbps receives a cost of 1.
However, using the default formula a Gigabit Ethernet interface also receives a cost of 1 which is not desirable in many OSPF topologies. As a solution, the reference bandwidth can be changed, for example the following configuration creates a reference bandwidth of 10000. Consequently, a Gigabit Ethernet interface will have a cost of 10, and a Fast Ethernet interface a cost of 100.
R1> R1>enable R1# R1#show ip ospf interface GigabitEthernet 0/0 | include Process Process ID 10, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 1 R1# R1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R1(config)# R1(config)#router ospf 10 R1(config-router)#auto-cost reference-bandwidth 10000 % OSPF: Reference bandwidth is changed. Please ensure reference bandwidth is consistent across all routers. R1(config-router)# R1(config-router)#exit R1(config)#exit R1# R1#show ip ospf interface GigabitEthernet 0/0 | include Process Process ID 10, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 10 R1# R1#show ip ospf | sec Reference Reference bandwidth unit is 10000 mbps Area BACKBONE(0) Number of interfaces in this area is 1
In this sample topology, area 1 is configured as a totally stubby area. R3 and R4 are Area Border Routers (ABR), both of the ABRs advertise a Type-3 LSA default route into area 1. The area default-cost command configures the metric of the default route originated on the ABRs. As a result, R3 can be configured as the primary ABR for traffic egressing (exiting) area 1 and destined to the Server.
Configuration:
R3#show run | sec router ospf router ospf 1 area 1 stub no-summary area 1 default-cost 10 network 10.0.0.0 0.0.0.15 area 0 network 10.1.0.0 0.0.0.15 area 1
R4#show run | sec router ospf router ospf 1 area 1 stub no-summary area 1 default-cost 20 network 10.0.0.0 0.0.0.15 area 0 network 10.1.0.0 0.0.0.15 area 1
R2#show ip route ospf | beg Ga Gateway of last resort is 10.1.0.10 to network 0.0.0.0 O*IA 0.0.0.0/0 [110/11] via 10.1.0.10, 00:11:45, GigabitEthernet0/1 « Default route cost 10. Plus Gigabit link cost 1. R2#show ip ospf rib 0.0.0.0 OSPF Router with ID (10.1.0.13) (Process ID 1) Base Topology (MTID 0) OSPF local RIB Codes: * - Best, > - Installed in global RIB LSA: type/LSID/originator *> 0.0.0.0/0, Inter, cost 11, area 1 SPF Instance 14, age 00:11:41 contributing LSA: 3/0.0.0.0/10.1.0.10 (area 1) contributing LSA: 3/0.0.0.0/10.1.0.14 (area 1) Flags: RIB, PartialSPF via 10.1.0.10, GigabitEthernet0/1 label 1048578 Flags: RIB LSA: 3/0.0.0.0/10.1.0.10 « R3 is advertising lower Type-3 LSA default route cost Host#trace 10.0.0.10 pr 1 Type escape sequence to abort. Tracing the route to 10.0.0.10 VRF info: (vrf in name/id, vrf out name/id) 1 10.1.0.1 2 msec 2 10.1.0.10 2 msec « R3 is used to exit area 1 3 10.0.0.3 5 msec 4 10.0.0.10 5 msec R1#show ip route ospf | beg Ga « View from R1 Gateway of last resort is 10.1.0.1 to network 0.0.0.0 O*IA 0.0.0.0/0 [110/12] via 10.1.0.1, 00:14:30, GigabitEthernet0/0 « Default route cost 10. Plus two Gigabit links, each link cost 1. 10+1+1 = 12 10.0.0.0/8 is variably subnetted, 4 subnets, 3 masks O 10.1.0.8/30 [110/2] via 10.1.0.1, 00:36:54, GigabitEthernet0/0 O 10.1.0.12/30 [110/2] via 10.1.0.1, 00:36:54, GigabitEthernet0/0
In this example, area 1 is a totally stubby area. R3 and R4 advertise different default route costs into area 1, making R3 the primary ABR for traffic exiting area 1.
To influence the opposite direction — for traffic entering area 1 from area 0 — the OSPF interface cost on R3 Gi0/0 and R4 Gi0/0 are adjusted. The observation shows the OSPF behavior to propagate the cost of outgoing interfaces. In other words, to influence the cost of an OSPF route towards a destination, the outgoing interface needs to be configured.
Configuration:
R3#show run | sec router ospf router ospf 1 area 1 stub no-summary area 1 default-cost 10 network 10.0.0.0 0.0.0.15 area 0 network 10.1.0.0 0.0.0.15 area 1 R3#show run int Gi0/0 | sec interface interface GigabitEthernet0/0 description ** to R2 ** ip address 10.1.0.10 255.255.255.252 ip ospf cost 10 duplex auto speed auto media-type rj45
R4#show run | sec router ospf router ospf 1 area 1 stub no-summary area 1 default-cost 20 network 10.0.0.0 0.0.0.15 area 0 network 10.1.0.0 0.0.0.15 area 1 R4#show run int Gi0/0 | sec interface interface GigabitEthernet0/0 description ** to R2 ** ip address 10.1.0.14 255.255.255.252 ip ospf cost 20 duplex auto speed auto media-type rj45
As a result, now R3 is configured as the primary router for traffic in both directions. The following outputs verify bidirectional traffic flow.
Host#trace 10.0.0.10 pr 1 Type escape sequence to abort. Tracing the route to 10.0.0.10 VRF info: (vrf in name/id, vrf out name/id) 1 10.1.0.1 2 msec 2 10.1.0.10 3 msec « R3 is primary ABR for traffic exiting area 1 3 10.0.0.3 5 msec 4 10.0.0.10 6 msec Server#trace 10.1.0.3 pr 1 Type escape sequence to abort. Tracing the route to 10.1.0.3 VRF info: (vrf in name/id, vrf out name/id) 1 10.0.0.9 1 msec 2 10.0.0.1 3 msec « R3 is primary ABR for traffic entering area 1 3 10.1.0.9 4 msec 4 10.1.0.3 6 msec
In the following scenario, R2 and R3 originate an OSPF default route with the default-information originate command. What this means, is that the OSPF default route is only advertised if there is a BGP default route received from R4. Also, the OSPF default route is injected as an external type-2 (E2) route.
Additionally, R3 injects the OSPF default route with a cost of 10, and as a result the ASBR R2 becomes the primary egress router for traffic destined to the Server.
Configuration:
R1#show run | sec ^router router ospf 10 router-id 1.1.1.1 passive-interface GigabitEthernet0/0 network 10.1.0.0 0.0.255.255 area 0 R1#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to Host ** ip address 10.1.0.2 255.255.255.252 duplex auto speed auto media-type rj45 R1#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R2 ** ip address 10.1.1.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R1#show run int Gi0/2 | sec int interface GigabitEthernet0/2 description ** to R3 ** ip address 10.1.2.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45
R2#show run | sec ^router router ospf 10 router-id 2.2.2.2 network 10.1.0.0 0.0.255.255 area 0 default-information originate router bgp 65001 bgp router-id 2.2.2.2 bgp log-neighbor-changes network 10.1.0.0 mask 255.255.255.252 neighbor 10.0.1.2 remote-as 65002 R2#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.1.1.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R2#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.0.1.1 255.255.255.252 duplex auto speed auto media-type rj45
R3#show run | sec ^router router ospf 10 router-id 3.3.3.3 network 10.1.0.0 0.0.255.255 area 0 default-information originate metric 10 router bgp 65001 bgp router-id 3.3.3.3 bgp log-neighbor-changes network 10.1.0.0 mask 255.255.255.252 neighbor 10.0.2.2 remote-as 65002 R3#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.1.2.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R3#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.0.2.1 255.255.255.252 duplex auto speed auto media-type rj45
R4#show run | sec ^router router bgp 65002 bgp router-id 4.4.4.4 bgp log-neighbor-changes neighbor 10.0.1.1 remote-as 65001 neighbor 10.0.1.1 default-originate neighbor 10.0.2.1 remote-as 65001 neighbor 10.0.2.1 default-originate R4#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R2 ** ip address 10.0.1.2 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R3 ** ip address 10.0.2.2 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Gi0/2 | sec int interface GigabitEthernet0/2 description ** to Server ** ip address 10.2.0.2 255.255.255.0 duplex auto speed auto media-type rj45
R1#show ip ospf rib 0.0.0.0 OSPF Router with ID (1.1.1.1) (Process ID 10) Base Topology (MTID 0) OSPF local RIB Codes: * - Best, > - Installed in global RIB LSA: type/LSID/originator *> 0.0.0.0/0, Ext2, cost 1, fwd cost 1, tag 10 « Default route is external type 2 SPF Instance 9, age 00:19:32 contributing LSA: 5/0.0.0.0/3.3.3.3 contributing LSA: 5/0.0.0.0/2.2.2.2 Flags: RIB, PartialSPF via 10.1.1.1, GigabitEthernet0/1 label 1048578 Flags: RIB LSA: 5/0.0.0.0/2.2.2.2 « Type 5 External LSA advertises the default route R1#show ip route ospf | beg Ga Gateway of last resort is 10.1.1.1 to network 0.0.0.0 *E2 0.0.0.0/0 [110/1] via 10.1.1.1, 00:21:07, GigabitEthernet0/1 « E2 default route received from ASBR R2#show ip route | beg Ga Gateway of last resort is 10.0.1.2 to network 0.0.0.0 B* 0.0.0.0/0 [20/0] via 10.0.1.2, 00:20:34 « OSPF ASBR R2 receives eBGP default route 10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks C 10.0.1.0/30 is directly connected, GigabitEthernet0/1 L 10.0.1.1/32 is directly connected, GigabitEthernet0/1 O 10.1.0.0/30 [110/2] via 10.1.1.2, 00:25:59, GigabitEthernet0/0 C 10.1.1.0/30 is directly connected, GigabitEthernet0/0 L 10.1.1.1/32 is directly connected, GigabitEthernet0/0 O 10.1.2.0/30 [110/2] via 10.1.1.2, 00:25:59, GigabitEthernet0/0 Host#trace 10.2.0.1 probe 1 Type escape sequence to abort. Tracing the route to 10.2.0.1 VRF info: (vrf in name/id, vrf out name/id) 1 10.1.0.2 1 msec 2 10.1.1.1 2 msec « ASBR R2 is primary gateway router 3 10.0.1.2 1 msec 4 10.2.0.1 2 msec
In the following example scenario, ASBR R2 and R3 redistribute the eBGP route 10.2.0.0/24 into OSPF. By default, OSPF external routes are advertised with the Metric Type-2 (E2 route). Additionally, R3 assigns the metric 10 to the redistributed prefix, and this makes R2 the primary ASBR for traffic destined to the Server.
Note that the seed metric of BGP routes redistributed into OSPF is 1. This means, the metric 1 is assigned to the external route redistributed into OSPF on ASBR R2. The previous section provides a more detailed comparison of OSPF E1 vs E2 routes.
Configuration:
R1#show run | sec ^router router ospf 10 router-id 1.1.1.1 passive-interface GigabitEthernet0/0 network 10.1.0.0 0.0.255.255 area 0 R1#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to Host ** ip address 10.1.0.2 255.255.255.252 duplex auto speed auto media-type rj45 R1#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R2 ** ip address 10.1.1.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R1#show run int Gi0/2 | sec int interface GigabitEthernet0/2 description ** to R3 ** ip address 10.1.2.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45
R2#show run | sec ^router router ospf 10 router-id 2.2.2.2 redistribute bgp 65001 subnets network 10.1.0.0 0.0.255.255 area 0 router bgp 65001 bgp router-id 2.2.2.2 bgp log-neighbor-changes network 10.1.0.0 mask 255.255.255.252 neighbor 10.0.1.2 remote-as 65002 R2#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.1.1.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R2#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.0.1.1 255.255.255.252 duplex auto speed auto media-type rj45
R3#show run | sec ^router router ospf 10 router-id 3.3.3.3 redistribute bgp 65001 metric 10 subnets network 10.1.0.0 0.0.255.255 area 0 router bgp 65001 bgp router-id 3.3.3.3 bgp log-neighbor-changes network 10.1.0.0 mask 255.255.255.252 neighbor 10.0.2.2 remote-as 65002 R3#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.1.2.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R3#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R4 ** ip address 10.0.2.1 255.255.255.252 duplex auto speed auto media-type rj45
R4#show run | sec ^router router bgp 65002 bgp router-id 4.4.4.4 bgp log-neighbor-changes network 10.2.0.0 mask 255.255.255.0 neighbor 10.0.1.1 remote-as 65001 neighbor 10.0.2.1 remote-as 65001 R4#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R2 ** ip address 10.0.1.2 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R3 ** ip address 10.0.2.2 255.255.255.252 duplex auto speed auto media-type rj45 R4#show run int Gi0/2 | sec int interface GigabitEthernet0/2 description ** to Server ** ip address 10.2.0.2 255.255.255.0 duplex auto speed auto media-type rj45
R1#show ip ospf rib 10.2.0.0 OSPF Router with ID (1.1.1.1) (Process ID 10) Base Topology (MTID 0) OSPF local RIB Codes: * - Best, > - Installed in global RIB LSA: type/LSID/originator *> 10.2.0.0/24, Ext2, cost 1, fwd cost 1, tag 65002 SPF Instance 27, age 00:19:05 contributing LSA: 5/10.2.0.0/2.2.2.2 « Type-5 LSA received from ASBR R2 contributing LSA: 5/10.2.0.0/3.3.3.3 Flags: RIB, PartialSPF via 10.1.1.1, GigabitEthernet0/1 label 1048578 Flags: RIB LSA: 5/10.2.0.0/2.2.2.2 R1#show ip ospf database external 10.2.0.0 OSPF Router with ID (1.1.1.1) (Process ID 10) Type-5 AS External Link States LS age: 1175 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 10.2.0.0 (External Network Number ) Advertising Router: 2.2.2.2 LS Seq Number: 80000001 Checksum: 0xB402 Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 1 « ASBR R2 assigns metric 1 Forward Address: 0.0.0.0 External Route Tag: 65002 LS age: 1175 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 10.2.0.0 (External Network Number ) Advertising Router: 3.3.3.3 LS Seq Number: 80000001 Checksum: 0xF0B8 Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 10 « ASBR R3 assigns metric 10 Forward Address: 0.0.0.0 External Route Tag: 65002 Host#trace 10.2.0.1 probe 1 Type escape sequence to abort. Tracing the route to 10.2.0.1 VRF info: (vrf in name/id, vrf out name/id) 1 10.1.0.2 1 msec 2 10.1.1.1 1 msec « ASBR R2 is primary gateway for egress traffic 3 10.0.1.2 2 msec 4 10.2.0.1 7 msec
In the following example scenario, ASBR R6 and ASBR R7 redistribute EIGRP routes into OSPF. These routes are flooded in the OSPF domain as Type-5 external LSAs. At the same time, ABR R3 and ABR R4 automatically generate Type-4 ASBR Summary LSAs that inform routers in area 0 about the ABR's distance to the ASBR.
In other words, the OSPF Type-4 LSA is a Summary LSA that informs about an inter-area route from the originating ABR to the ASBR. The metric in a Type-4 LSA is the cost to reach the ASBR from the ABR.
Configuration:
R1#show run | sec ^router router ospf 10 router-id 1.1.1.1 network 10.0.1.0 0.0.0.3 area 0 R1#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R2 ** ip address 10.0.1.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45
R2#show run | sec ^router router ospf 10 router-id 2.2.2.2 network 10.0.1.0 0.0.0.3 area 0 network 10.0.2.0 0.0.0.3 area 0 network 10.0.3.0 0.0.0.3 area 0 R2#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R1 ** ip address 10.0.1.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R2#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to ABR R3 ** ip address 10.0.2.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R2#show run int Gi0/2 | sec int interface GigabitEthernet0/2 description ** to ABR R4 ** ip address 10.0.3.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45
R3#show run | sec ^router router ospf 10 router-id 3.3.3.3 network 10.0.2.0 0.0.0.3 area 0 network 10.1.1.0 0.0.0.3 area 1 R3#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R2 ** ip address 10.0.2.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R3#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R5 ** ip address 10.1.1.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45
R4#show run | sec ^router router ospf 10 router-id 4.4.4.4 network 10.0.3.0 0.0.0.3 area 0 network 10.1.3.0 0.0.0.3 area 1 R4#show run int Gi0/0 | sec ^int interface GigabitEthernet0/0 description ** to R2 ** ip address 10.0.3.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R4#show run int Gi0/1 | sec ^int interface GigabitEthernet0/1 description ** to ASBR R7 ** ip address 10.1.3.1 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45
R5#show run | sec ^router router ospf 10 router-id 5.5.5.5 network 10.1.1.0 0.0.0.3 area 1 network 10.1.2.0 0.0.0.3 area 1 R5#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to ABR R3 ** ip address 10.1.1.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R5#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to ASBR R6 ** ip address 10.1.2.1 255.255.255.252 ip ospf network point-to-point ip ospf cost 15 duplex auto speed auto media-type rj45
R6#show run | sec ^router router eigrp EXAMPLE-EIGRP ! address-family ipv4 unicast autonomous-system 10 ! topology base default-metric 1000 1 1 1 1500 redistribute ospf 10 exit-af-topology network 10.2.1.0 0.0.0.3 eigrp router-id 6.6.6.6 exit-address-family router ospf 10 router-id 6.6.6.6 redistribute eigrp 10 subnets route-map RM-REDIST network 10.1.2.0 0.0.0.3 area 1 R6#show run | sec ^route-map route-map RM-REDIST permit 10 match ip address prefix-list PL-REDIST R6#show run | sec ^ip prefix ip prefix-list PL-REDIST seq 5 permit 192.168.1.0/24 ip prefix-list PL-REDIST seq 10 permit 192.168.2.0/24 R6#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to R5 ** ip address 10.1.2.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R6#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R8 ** ip address 10.2.1.1 255.255.255.252 duplex auto speed auto media-type rj45
R7#show run | sec ^router router eigrp EXAMPLE-EIGRP ! address-family ipv4 unicast autonomous-system 10 ! topology base default-metric 1000 1 1 1 1500 redistribute ospf 10 exit-af-topology network 10.2.2.0 0.0.0.3 eigrp router-id 7.7.7.7 exit-address-family router ospf 10 router-id 7.7.7.7 redistribute eigrp 10 subnets route-map RM-REDIST network 10.1.3.0 0.0.0.3 area 1 R7#show run | sec ^route-map route-map RM-REDIST permit 10 match ip address prefix-list PL-REDIST R7#show run | sec ^ip prefix ip prefix-list PL-REDIST seq 5 permit 192.168.1.0/24 ip prefix-list PL-REDIST seq 10 permit 192.168.2.0/24 R7#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to ABR R4 ** ip address 10.1.3.2 255.255.255.252 ip ospf network point-to-point duplex auto speed auto media-type rj45 R7#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to R8 ** ip address 10.2.2.1 255.255.255.252 duplex auto speed auto media-type rj45
R8#show run | sec ^router router eigrp EXAMPLE-EIGRP ! address-family ipv4 unicast autonomous-system 10 ! topology base exit-af-topology network 10.2.1.0 0.0.0.3 network 10.2.2.0 0.0.0.3 network 192.168.1.0 network 192.168.2.0 eigrp router-id 8.8.8.8 exit-address-family R8#show run int Gi0/0 | sec int interface GigabitEthernet0/0 description ** to ASBR R6 ** ip address 10.2.1.2 255.255.255.252 duplex auto speed auto media-type rj45 R8#show run int Gi0/1 | sec int interface GigabitEthernet0/1 description ** to ASBR R7 ** ip address 10.2.2.2 255.255.255.252 duplex auto speed auto media-type rj45 R8#show run int Lo10 | sec int interface Loopback10 ip address 192.168.1.1 255.255.255.0 R8#show run int Lo20 | sec int interface Loopback20 ip address 192.168.2.1 255.255.255.0
R2#show ip ospf database OSPF Router with ID (2.2.2.2) (Process ID 10) Router Link States (Area 0) Link ID ADV Router Age Seq# Checksum Link count 1.1.1.1 1.1.1.1 233 0x80000002 0x006F8E 2 2.2.2.2 2.2.2.2 232 0x80000004 0x00B1BA 6 3.3.3.3 3.3.3.3 308 0x80000002 0x000ADF 2 4.4.4.4 4.4.4.4 299 0x80000002 0x00DFFF 2 Summary Net Link States (Area 0) Link ID ADV Router Age Seq# Checksum 10.1.1.0 3.3.3.3 313 0x80000001 0x008D99 10.1.2.0 3.3.3.3 285 0x80000001 0x0019FD 10.1.3.0 4.4.4.4 306 0x80000001 0x0059C7 Summary ASB Link States (Area 0) « These are the Type-4 LSAs flooded by the ABRs into area 0 Link ID ADV Router Age Seq# Checksum 6.6.6.6 3.3.3.3 245 0x80000001 0x00AC5B « "Link ID" is Router ID of ASBR, "ADV Router" is ABR 7.7.7.7 4.4.4.4 281 0x80000001 0x00C945 Type-5 AS External Link States Link ID ADV Router Age Seq# Checksum Tag 192.168.1.0 6.6.6.6 244 0x80000001 0x0076A7 0 192.168.1.0 7.7.7.7 239 0x80000001 0x0058C1 0 192.168.2.0 6.6.6.6 244 0x80000001 0x006BB1 0 192.168.2.0 7.7.7.7 239 0x80000001 0x004DCB 0 R2#show ip ospf database asbr-summary OSPF Router with ID (2.2.2.2) (Process ID 10) Summary ASB Link States (Area 0) LS age: 300 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 6.6.6.6 (AS Boundary Router address) « Router ID of the ASBR Advertising Router: 3.3.3.3 « Router ID of the ABR advertising this LSA LS Seq Number: 80000001 Checksum: 0xAC5B Length: 28 Network Mask: /0 MTID: 0 Metric: 16 « OSPF cost from the ABR to the ASBR LS age: 337 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 7.7.7.7 (AS Boundary Router address) Advertising Router: 4.4.4.4 LS Seq Number: 80000001 Checksum: 0xC945 Length: 28 Network Mask: /0 MTID: 0 Metric: 1 R2#show ip ospf database asbr-summary 6.6.6.6 « This command queries the ASBR OSPF Router with ID (2.2.2.2) (Process ID 10) Summary ASB Link States (Area 0) LS age: 337 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 6.6.6.6 (AS Boundary Router address) Advertising Router: 3.3.3.3 LS Seq Number: 80000001 Checksum: 0xAC5B Length: 28 Network Mask: /0 MTID: 0 Metric: 16 R2#show ip ospf database asbr-summary adv-router 3.3.3.3 « This command queries the ABR that creates the Type-4 summary LSA OSPF Router with ID (2.2.2.2) (Process ID 10) Summary ASB Link States (Area 0) LS age: 351 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 6.6.6.6 (AS Boundary Router address) Advertising Router: 3.3.3.3 LS Seq Number: 80000001 Checksum: 0xAC5B Length: 28 Network Mask: /0 MTID: 0 Metric: 16
An important metric is derived from the Type-4 LSA. The Forwarding Cost (or Forward Metric) is used on R2 to decide which external Type-5 LSA to install in its routing table. The Forwarding Cost of an OSPF external route is the metric to reach the ASBR, and it is used to select the shortest path to the external route.
In other words, the ASBRs redistribute EIGRP prefixes as OSPF E2 routes. OSPF E2 routes do not change their metric while they are flooded in the OSPF domain. Thus, looking at the E2 route metric alone, R2 can not know if the path through ASBR R6 or ASBR R7 is shorter. This is why R2 examines the Forwarding Cost to reach the ASBRs, and finds that ASBR R7 is the best path based on the lower Forwarding Cost. As a result, R2 installs the Type-5 LSA originated by ASBR R7.
R2#show ip ospf database external 192.168.1.0 OSPF Router with ID (2.2.2.2) (Process ID 10) Type-5 AS External Link States LS age: 1247 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 6.6.6.6 « Type-5 LSA originated on ASBR R6 LS Seq Number: 80000001 Checksum: 0x76A7 Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 20 « Has E2 metric 20 Forward Address: 0.0.0.0 « Forward address set to 0.0.0.0 because ASBR R6 is not in NSSA, but in normal area External Route Tag: 0 LS age: 1241 Options: (No TOS-capability, DC, Upward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 7.7.7.7 LS Seq Number: 80000001 Checksum: 0x58C1 Length: 36 Network Mask: /24 Metric Type: 2 (Larger than any link state path) MTID: 0 Metric: 20 « Type-5 LSA from ASBR R7 also has same E2 metric 20 Forward Address: 0.0.0.0 External Route Tag: 0 R2#show ip ospf database asbr-summary OSPF Router with ID (2.2.2.2) (Process ID 10) Summary ASB Link States (Area 0) LS age: 1557 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 6.6.6.6 (AS Boundary Router address) Advertising Router: 3.3.3.3 LS Seq Number: 80000001 Checksum: 0xAC5B Length: 28 Network Mask: /0 MTID: 0 Metric: 16 « However, the Type-4 LSA informs about the distance to reach the ASBR LS age: 1594 Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 7.7.7.7 (AS Boundary Router address) Advertising Router: 4.4.4.4 LS Seq Number: 80000001 Checksum: 0xC945 Length: 28 Network Mask: /0 MTID: 0 Metric: 1 « ASBR R7 has a lower metric from the ABR R2#show ip ospf rib 192.168.1.0 OSPF Router with ID (2.2.2.2) (Process ID 10) Base Topology (MTID 0) OSPF local RIB Codes: * - Best, > - Installed in global RIB LSA: type/LSID/originator *> 192.168.1.0/24, Ext2, cost 20, fwd cost 2, tag 0 « As a result, R2 prefers the Type-5 LSA to ASBR R7 SPF Instance 10, age 00:26:09 contributing LSA: 5/192.168.1.0/7.7.7.7 contributing LSA: 5/192.168.1.0/6.6.6.6 Flags: RIB via 10.0.3.2, GigabitEthernet0/2 label 1048578 Flags: RIB LSA: 5/192.168.1.0/7.7.7.7 R2#show ip ospf rib 192.168.1.0 OSPF Router with ID (2.2.2.2) (Process ID 10) Base Topology (MTID 0) OSPF local RIB Codes: * - Best, > - Installed in global RIB LSA: type/LSID/originator *> 192.168.1.0/24, Ext2, cost 20, fwd cost 17, tag 0 « If ABR R4 fails, the forwarding cost reflects the cost to reach ASBR R6 SPF Instance 11, age 00:03:01 contributing LSA: 5/192.168.1.0/6.6.6.6 Flags: RIB via 10.0.2.2, GigabitEthernet0/1 label 1048578 Flags: RIB LSA: 5/192.168.1.0/6.6.6.6
Disclaimer: You download and use files from networkstudysite.com at your own risk.
Lab YAML files:
Packet captures:
How to use these files:
With YAML files you can easily recreate the example labs on networkstudysite.com. Learn more in this short guide.
Explore 313 packet captures
You can find more information at the following external links:
By clicking on the links below, you are leaving the networkstudysite.com website.
Cisco Press - Understanding the OSPF Link-State Routing Protocol
Cisco - Understand Open Shortest Path First (OSPF) - Design Guide
Cisco Community - How to configure OSPF cost
Cisco Community - OSPF Forward Metric
RFC 2328 - OSPF Version 2
Disclaimer:
Use at your own risk: networkstudysite.com makes no representations as to accuracy, completeness, currentness, suitability, or validity of any information found on this website. Full disclaimer on the About page.
Privacy Policy:
networkstudysite.com does not install browser cookies to collect or store your data.
Thank you for your interest in this blog post!
Looking for something else? View infographics, explore the archives or read the recommended posts below: